Face Hallucination with Tiny Unaligned Images by Transformative Discriminative Neural Networks

نویسندگان

  • Xin Yu
  • Fatih Murat Porikli
چکیده

Conventional face hallucination methods rely heavily on accurate alignment of low-resolution (LR) faces before upsampling them. Misalignment often leads to deficient results and unnatural artifacts for large upscaling factors. However, due to the diverse range of poses and different facial expressions, aligning an LR input image, in particular when it is tiny, is severely difficult. To overcome this challenge, here we present an end-to-end transformative discriminative neural network (TDN) devised for super-resolving unaligned and very small face images with an extreme upscaling factor of 8. Our method employs an upsampling network where we embed spatial transformation layers to allow local receptive fields to line-up with similar spatial supports. Furthermore, we incorporate a class-specific loss in our objective through a successive discriminative network to improve the alignment and upsampling performance with semantic information. Extensive experiments on large face datasets show that the proposed method significantly outperforms the state-of-the-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alignment-Free and High-Frequency Compensation in Face Hallucination

Face hallucination is one of learning-based super resolution techniques, which is focused on resolution enhancement of facial images. Though face hallucination is a powerful and useful technique, some detailed high-frequency components cannot be recovered. It also needs accurate alignment between training samples. In this paper, we propose a high-frequency compensation framework based on residu...

متن کامل

Ultra-Resolving Face Images by Discriminative Generative Networks

Conventional face super-resolution methods, also known as face hallucination, are limited up to 2∼4× scaling factors where 4 ∼ 16 additional pixels are estimated for each given pixel. Besides, they become very fragile when the input low-resolution image size is too small that only little information is available in the input image. To address these shortcomings, we present a discriminative gene...

متن کامل

Adversarial Discriminative Heterogeneous Face Recognition

The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature...

متن کامل

Deep Joint Face Hallucination and Recognition

Deep models have achieved impressive performance for face hallucination tasks. However, we observe that directly feeding the hallucinated facial images into recognition models can even degrade the recognition performance despite the much better visualization quality. In this paper, we address this problem by jointly learning a deep model for two tasks, i.e. face hallucination and recognition. I...

متن کامل

Learning Face Hallucination in the Wild

Face hallucination method is proposed to generate highresolution images from low-resolution ones for better visualization. However, conventional hallucination methods are often designed for controlled settings and cannot handle varying conditions of pose, resolution degree, and blur. In this paper, we present a new method of face hallucination, which can consistently improve the resolution of f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017